Myvideo

Guest

Login

KDD 2021 invited talk: It is time for deep learning to understand its expense bills by Eric Xing

Uploaded By: Myvideo
1 view
0
0 votes
0

In the past several years, deep learning has dominated both academic and industrial R&D over a wide range of applications, with two remarkable trends: 1) developing and training ever larger “all-purpose” monster models over all data possibly available, with a astounding 10,000x parameter number increase in recent 3 years; 2) developing and assembling end-to-end “white-boxes” deployments with ever larger number of component sub-models that need to be highly customized and interoperative. Progresses made to the leaderboards or featured in news headlines are highlighting metrics such as saliency of content production, accuracy on labeling, or speed of convergence, but a number of key challenges impacting the cost effectiveness of such results, and eventually the sustainability of current R&D efforts in DL, are not receiving enough attention: 1) For large models, how many lines of code outside of the DL model are need to parallelize the computing over a computer cluster? (2) Which/How many hardware resources to u

Share with your friends

Link:

Embed:

Video Size:

Custom size:

x

Add to Playlist:

Favorites
My Playlist
Watch Later