“A Practical Guide to Neural Network Quantization“ Marios Fournarakis Deep Learning Researcher Qualcomm AI Research, Amsterdam Neural network quantization is an effective way of reducing the power requirements and latency of neural network inference while maintaining high accuracy. The success of quantization has led to a large volume of literature and competing methods in recent years, and Qualcomm has been at the forefront of this research. This talk aims to cut through the noise and introduce a practical guide for quantizing neural networks inspired by our research and expertise at Qualcomm. We will begin with an introduction to quantization and fixed-point accelerators for neural network inference. We will then consider implementation pipelines for quantizing neural networks with near floating-point accuracy for popular neural networks and benchmarks. Finally, you will leave this talk with a set of diagnostic and debugging tools to address common neural network quantization issu
Hide player controls
Hide resume playing