Myvideo

Guest

Login

Топологические инварианты интегрируемых биллиардов - Ведюшкина Виктория Викторовна. Лекция 1

Uploaded By: Myvideo
2 views
0
0 votes
0

«Математическая весна» – ежегодная студенческая школа-конференция, проводимая в Нижнем Новгороде Лектор: Ведюшкина Виктория Викторовна, механико-математический факультет МГУ им. М.В.Ломоносова, Москва Интегрируемой называют динамическую систему, имеющую «достаточно большой» набор независимых первых интегралов. Фазовое пространство такой системы разбивается на поверхности меньшей размерности — совместные поверхности уровня нескольких первых интегралов. Для многих систем почти все эти слои суть замыкания фазовых траекторий. Классифицирующие топологические инварианты Фоменко-Цишанга (графы с метками) позволяют описать топологию возникающего слоения системы. Совпадение инвариантов у двух систем означает, что более сложную систему можно топологически промоделировать с помощью более простой. Интересный класс интегрируемых систем был найден в классе биллиардов – гамильтоновых систем движения шара по области-столу с отражениями от ее границы. Примером служит биллиард внутри круга: интегралом, независимым с энергией системы, является радиус окружности (с тем же центром, что и сам круг), которой касаются все звенья ломаной-траектории на столе. Вопрос о критерии интегрируемости биллиарда составляет знаменитую гипотезу Биркгофа. Несколько ее вариаций были совсем недавно доказаны А.А.Глуцюком, А.Е.Мироновым и М.Бялым, С.В.Болотиным, В.Ю.Калошина и А.Соррентино. Класс плоских интегрируемых биллиардов оказался весьма узок: гладкие дуги границы стола принадлежат софокусным квадрикам или концентрическим окружностям и их радиусам. Существенным расширением этого класса (сохраняющим интегрируемость) оказался построенный класс кусочно-плоских «биллиардных книжек»: разрешим изометрично склеивать несколько плоских софокусных областей-«листов» по их общим граничным дугам-«корешкам». «Корешки» оснастим циклическими перестановками, задающими переход шара с листа на лист после удара об этот корешок. Движение по книжке остается весьма наглядным, а топологический инвариант может быть алгоритмически вычислен. Класс получаемых значений инвариантов оказался весьма широким, а их вычисление по комбинаторным данным стола и перестановок допускает алгоритмизацию. Всё это, в частности, позволяет моделировать многие интегрируемые случаи классической механики и геодезические потоки лиувиллевых метрик на сфере и торе. #математическая_весна #ВШЭ #математика #биллиярды #интегрируемые_системы

Share with your friends

Link:

Embed:

Video Size:

Custom size:

x

Add to Playlist:

Favorites
My Playlist
Watch Later