Myvideo

Guest

Login

Олимпиадная геометрия. Доказательство геометрических неравенств.

Uploaded By: Myvideo
1 view
0
0 votes
0

Интересная задача 58-го Уральского турнира юных математиков: В равностороннем треугольнике ABC, в котором AB = 2, на сторонах AC и BC выбраны точки X и Y . Когда треугольник согнули по линии XY, вершина C попала на сторону AB. Докажите, что CX CY ≥ 2, CX*CY ≥1, XY ≥ 1. Сайт: Почта: eduard@

Share with your friends

Link:

Embed:

Video Size:

Custom size:

x

Add to Playlist:

Favorites
My Playlist
Watch Later