Myvideo

Guest

Login

Karyotype analysis basics

Uploaded By: Myvideo
1 view
0
0 votes
0

A karyotype (Greek karyon = kernel, seed or nucleus) is the number and appearance of chromosomes in the nucleus of a eukaryotic cell. The term is also used for the complete set of chromosomes in a species, or an individual organism. Karyotypes describe the number of chromosomes, and what they look like under a light microscope. Attention is paid to their length, the position of the centromeres, banding pattern, any differences between the sex chromosomes, and any other physical characteristics. The preparation and study of karyotypes is part of cytogenetics. Karyogram of human male using Giemsa staining The study of whole sets of chromosomes is sometimes known as karyology. The chromosomes are depicted (by rearranging a photomicrograph) in a standard format known as a karyogram or idiogram: in pairs, ordered by size and position of centromere for chromosomes of the same size. The basic number of chromosomes in the somatic cells of an individual or a species is called the somatic number and is designated 2n. Thus, in humans 2n = 46. In the germ-line (the sex cells) the chromosome number is n (humans: n = 23) So, in normal diploid organisms, autosomal chromosomes are present in two copies. There may, or may not, be sex chromosomes. Polyploid cells have multiple copies of chromosomes and haploid cells have single copies. The study of karyotypes is important for cell biology and genetics, and the results may be used in evolutionary biology (karyosystematics) and medicine. Karyotypes can be used for many purposes; such as to study chromosomal aberrations, cellular function, taxonomic relationships, and to gather information about past evolutionary events. Staining The study of karyotypes is made possible by staining. Usually, a suitable dye, such as Giemsa, is applied after cells have been arrested during cell division by a solution of colchicine. For humans, white blood cells are used most frequently because they are easily induced to divide and grow in tissue culture. Sometimes observations may be made on non-dividing (interphase) cells. The sex of an unborn fetus can be determined by observation of interphase cells (see amniotic centesis and Barr body). Observations Six different characteristics of karyotypes are usually observed and compared: Differences in absolute sizes of chromosomes. Chromosomes can vary in absolute size by as much as twenty-fold between genera of the same family. For example, the legumes Lotus tenuis and Vicia faba each have six pairs of chromosomes, yet V. faba chromosomes are many times larger. These differences probably reflect different amounts of DNA duplication. Differences in the position of centromeres. These differences probably came about through translocations. Differences in relative size of chromosomes. These differences probably arose from segmental interchange of unequal lengths. Differences in basic number of chromosomes. These differences could have resulted from successive unequal translocations which removed all the essential genetic material from a chromosome, permitting its loss without penalty to the organism (the dislocation hypothesis) or through fusion. Humans have one pair fewer chromosomes than the great apes. Human chromosome 2 appears to have resulted from the fusion of two ancestral chromosomes, and many of the genes of those two original chromosomes have been translocated to other chromosomes. Differences in number and position of satellites. Satellites are small bodies attached to a chromosome by a thin thread. Differences in degree and distribution of heterochromatic regions. Heterochromatin stains darker than euchromatin. Heterochromatin is packed tighter. Heterochromatin consists mainly of genetically inactive and repetitive DNA sequences. Euchromatin is usually under active transcription. A full account of a karyotype may therefore include the number, type, shape and banding of the chromosomes, as well as other cytogenetic information. Variation is often found: between the sexes, between the germ-line and soma (between gametes and the rest of the body), between members of a population (chromosome polymorphism), in geographic specialization, and in Mosaics or otherwise abnormal individuals. #Karyotype #chromosomes #centromeres #cytogenetics #karyogram #karyology #idiogram #autosomalChromosomes #genetics #Giemsa

Share with your friends

Link:

Embed:

Video Size:

Custom size:

x

Add to Playlist:

Favorites
My Playlist
Watch Later