Myvideo

Guest

Login

Теорема Семереди и динамические системы 2 // Владимир Успенский

Uploaded By: Myvideo
22 views
0
0 votes
0

Если разбить натуральный ряд на конечное число частей, то в одной из этих частей содержатся сколь угодно длинные арифметические прогрессии (теорема ван дер Вардена). Теорема Семереди усиливает теорему ван дер Вардена: если некоторые натуральные числа покрашены в зеленый цвет и при этом существуют сколь угодно длинные отрезки натурального ряда, в которых доля зеленых чисел составляет не менее одного процента (или любой другой положительной константы), то существуют сколь угодно длинные арифметические прогрессии, состоящие из зеленых чисел. Замечательное доказательство теоремы Семереди, предложенное Фюрстенбергом, основано на эргодической теории. Эта теория изучает преобразования, сохраняющие меру, и поведение таких преобразований при итерациях. В курсе будут изложены основные идеи доказательства Фюрстенберга. Успенский Владимир Владимирович Летняя школа «Современная математика», г. Дубна 21-29 июля 2012 г.

Share with your friends

Link:

Embed:

Video Size:

Custom size:

x

Add to Playlist:

Favorites
My Playlist
Watch Later