MindSearch: Мультиагентная система веб-поиска под управлением языковой модели MindSearch - фреймворк от InternLM, объединяющий сильные стороны больших языковых моделей (LLM) и поисковых систем для решения задач поиска и агрегации информации в Интернете. Привлекательность фреймворка складывается из способности эффективно управлять контекстом поиска, распределяя когнитивную нагрузку между несколькими агентами, навыком сокращения длины контекста для каждого агента и способностью к построению иерархии поисковых запросов. Архитектура MindSearch состоит из двух частей: WebPlanner. Этот агент имитирует человеческие рассуждения, декомпозируя запрос пользователя в направленный ациклический граф (DAG). Каждый узел графа представляет собой подвопрос, который может быть решен независимо. WebPlanner динамически строит DAG, генерируя код Python для добавления узлов и связей, тем самым итеративно решет последовательность задач и параллельно выполняет подзадачи. WebSearcher выполняет иерархический поиск информации для ответа на подвопросы, заданные WebPlanner. Он начинает с генерации нескольких семантически похожих запросов, чтобы расширить область поиска и улучшить запоминание. Затем он выбирает наиболее релевантные веб-страницы для детального прочтения и использует LLM для создания ответа на основе собранной информации. Эксперименты на задачах с закрытыми (GPT) и открытыми (InternLM) языковыми моделями показали эффективность MindSearch. По сравнению с существующими решениями для поиска (ChatGPT-Web и Perplexity Pro), MindSearch генерирует ответы с большей глубиной и широтой. Целевая группа людей-экспертов предпочитали ответы от MindSearch, нежели ответы от Perplexity/ChatGPT или поисковую выдачу классической поисковой системы. Локальная установка может взаимодействовать как с онлайн-сервисами AI (GPT, Claude), так и локально запущенные LLM, с помощью FAST API. Настройка моделей и указание API ключей для онлайн-сервисов Ai производятся в файле models по пути /mindsearch/agent/ В репозитории MindSearch в качестве локального фронтэнда предлагается на выбор UI на Gradio, React или Streamlit. Локальный запуск на примере локальной LLM и UI Gradio: pip install -r python -m —lang en —model_format internlm_server python frontend/ Лицензирование : Apache 2.0 license Страница проекта Arxiv
Hide player controls
Hide resume playing