Евкли́дово простра́нство (также эвкли́дово пространство) в изначальном смысле — это пространство, свойства которого описываются аксиомами евклидовой геометрии. В этом случае предполагается, что пространство имеет размерность, равную 3, то есть является трёхмерным. В современном понимании, в более общем смысле, может обозначать один из сходных и тесно связанных объектов: конечномерное вещественное векторное пространство {\displaystyle \mathbb {R} ^{n}}\mathbb {R} ^{n} с введённым на нём положительно определённым скалярным произведением; либо метрическое пространство, соответствующее такому векторному пространству. Некоторые авторы ставят знак равенства между евклидовым и предгильбертовым пространством. В этой статье за исходное будет взято первое определение. {\displaystyle n}n-мерное евклидово пространство обычно обозначается {\displaystyle \mathbb {E} ^{n}}{\displaystyle \mathbb {E} ^{n}}; также часто используется обозначение {\display
Hide player controls
Hide resume playing