Myvideo

Guest

Login

MLFlow - версионирование экспериментов // Демо-занятие курса MLOps

Uploaded By: Myvideo
9 views
0
0 votes
0

Как понять, что последний эксперимент дает лучшие результаты? А как сравнить с предпоследним? Часто при решении ML задачи нам приходится тестировать десятки моделей в десятках конфигурация гиперпараметров. А 10х10 это уже сотни. Как не запутаться в этой куче параметров и выбрать лучшую модель - нам поможет замечательный инструмент мониторинга экспериментов MLFlow. MLFlow один из самых популярных инструментов который позволит зафиксировать все параметры, запишет кривые обучения и запомнит все метрики для каждого эксперимента. Более того, он даже сохранит обученные модели и вы сможете указать какая модель в каком релизе была использована. Это действительно одна из “рабочих лошадок“ ML инженера, который выходит на уровень написания серьезного кода и контролирует свои модели. Убедитесь в этом на открытом практическом уроке «MLFlow - версионирование экспериментов» от OTUS. Вы узнаете, как реализовать развернуть и настроить MLFlow локально и в облачной среде, как добавить в свой код логирование параметров экспериментов и как сохранить ваши обученные модели в реестр моделей для их дальнейшего переиспользования на основе полученных метрик. «MLOps» - Преподаватель: Игорь Стурейко - Teamlead, главный инженер в FinTech Подключайтесь к обсуждению в чате - Пройдите опрос по итогам мероприятия - Следите за новостями проекта: - Telegram: - ВКонтакте: - LinkedIn: - Хабр:

Share with your friends

Link:

Embed:

Video Size:

Custom size:

x

Add to Playlist:

Favorites
My Playlist
Watch Later