Роевой интеллект (РИ) (англ. swarm intelligence) описывает коллективное поведение децентрализованной самоорганизующейся системы. Рассматривается в теории искусственного интеллекта как метод оптимизации. Термин был введён Херардо Бени и Ван Цзином в 1989 году, в контексте системы клеточных роботов. Однако ранее идея подробно рассмотрена Станиславом Лемом в романе «Непобедимый» (1964) и эссе «Системы оружия двадцать первого века, или Эволюция вверх ногами» (1983). Системы роевого интеллекта, как правило, состоят из множества агентов (боидов) локально взаимодействующих между собой и с окружающей средой. Идеи поведения, как правило, исходят от природы, а в особенности, от биологических систем. Каждый боид следует очень простым правилам и, несмотря на то, что нет какой-то централизованной системы управления поведения, которая бы указывала каждому из них на то, что ему следует делать, локальные и, в некоторой степени, случайные взаимодействия приводят к возникновению интеллектуального группового поведения, неконтролируемого отдельными боидами. Точное определение роевого интеллекта всё ещё не сформулировано. В целом, РИ должен представлять собой многоагентную систему, которая бы обладала самоорганизующимся поведением, которое, суммарно, должно проявлять некоторое разумное поведение. Применение роевых принципов в робототехнике называют групповой робототехникой, в то время как понятие «роевой интеллект» относится к более общему набору алгоритмов. «Роевое прогнозирование» применяется в решении некоторых задач прогнозирования. Алгоритм оптимизации серых волков (Gray Wolf Optimizer, GWO) является мета-эвристическим алгоритмом оптимизации, который был предложен С. Мирамуничем и Дж. Р. Мирамуничем в 2014 году.[7] В основе этого алгоритма лежит имитация социального поведения и иерархии волков в природе. Алгоритм использует четыре типа волков: альфа, бета, дельта и омега. Альфа-волки доминируют и принимают решения о направлении охоты, бета-волки подчиняются и помогают альфа-волкам, дельта-волки помогают другим волкам и следуют за лидерами, а омега-волки обычно следуют за остальными и выполняют большую часть работы. Эта иерархия используется в алгоритме для обновления позиции волков и поиска глобального оптимума. В каждой итерации алгоритма альфа, бета и дельта-волки обновляют свои позиции в пространстве решений, используя собственные лучшие решения и лучшие решения других волков. Омега-волки обновляют свои позиции, следуя за лучшими волками. Подобно другим биомиметическим алгоритмам, алгоритм оптимизации серых волков использует поведение и взаимодействие животных в природе для создания эффективных методов решения сложных задач оптимизации.
Hide player controls
Hide resume playing