Myvideo

Guest

Login

Как решить тригонометрическое уравнение sin(x)+ cos(x)=17/32 // Сергей Фролов / Математический мирок

Uploaded By: Myvideo
31 view
0
0 votes
0

Заметим, что уравнение симметрично относительно квадрата синуса аргумента и квадрата косинуса аргумента. Это означает, что, если поменять местами квадраты синуса и косинуса, то уравнение не изменится. Сделаем замену неизвестных: u=sin²(x), v=cos²(x). Получим систему уравнений: u⁴ v⁴=17/32, u v=1 (второе уравнение следует из основного тригонометрического тождества). Система симметрична по неизвестным u и v, поэтому можно выполнить стандартную подстановку: p=uv, s=u v, то есть в качестве новых неизвестных взять произведение и сумму старых. Для того, чтобы записать первое уравнение через p и s, потребуется разложить на слагаемые выражение (u v)⁴ с помощью формулы бинома Ньютона. Полученная система распадается на два независимых уравнения, поэтому её решение не составляет труда. Остаётся вернуться к неизвестным u и v и найти их как корни квадратного уравнения, коэффициенты которого выражаются через p и s по теореме Виета. В результате, возвращаясь к исходному неизвестному, получаем уравнение вида sin(x)=a, которое легко решается.

Share with your friends

Link:

Embed:

Video Size:

Custom size:

x

Add to Playlist:

Favorites
My Playlist
Watch Later