Stereo Vision in Humans and Insects by Prof. Jenny Read, PhD, Institute of Neuroscience, Newcastle University. Stereopsis – deriving information about distance by comparing views from two eyes – is widespread in vertebrates but so far known in only class of invertebrates, the praying mantids. Understanding stereopsis which has evolved independently in such a different nervous system promises to shed light on the constraints governing any stereo system. Behavioral experiments indicate that insect stereopsis is functionally very different from that studied in vertebrates. Vertebrate stereopsis depends on matching up the pattern of contrast in the two eyes; it works in static scenes, and may have evolved in order to break camouflage rather than to detect distances. Insect stereopsis matches up regions of the image where the luminance is changing; it is insensitive to the detailed pattern of contrast and operates to detect the distance to a moving target. Work from my lab has revealed a network of neurons within the mantis brain which are tuned to binocular disparity, including some that project to early visual areas. This is in contrast to previous theories which postulated that disparity was computed only at a single, late stage, where visual information is passed down to motor neurons. Thus, despite their very different properties, the underlying neural mechanisms supporting vertebrate and insect stereopsis may be computationally more similar than has been assumed. Monday Colloquium from July 5, 2021 Upcoming Talks:
Hide player controls
Hide resume playing