Myvideo

Guest

Login

Why is genetic polymorphism important to evolution

Uploaded By: Myvideo
1 view
0
0 votes
0

Evolutionary genetics is the broad field of studies that resulted from the integration of genetics and Darwinian evolution, called the 'modern synthesis' (Huxley 1942), achieved through the theoretical works of R. A. Fisher, S. Wright, and J. B. S. Haldane and the conceptual works and influential writings of J. Huxley, T. Dobzhansky, and H.J. Muller. This field attempts to account for evolution in terms of changes in gene and genotype frequencies within populations and the processes that convert the variation with populations into more or less permanent variation between species. In this view, four evolutionary forces (mutation, random genetic drift, natural selection, and gene flow) acting within and among populations cause micro-evolutionary change and these processes are sufficient to account for macro-evolutionary patterns, which arise in the longer term from the collective action of these forces. That is, given very long periods of time, the micro-evolutionary forces will eventually give rise to the macro-evolutionary patterns that characterize the higher taxonomic groups. Thus, the central challenge of Evolutionary Genetics is to describe how the evolutionary forces shape the patterns of biodiversity observed in nature. The force of mutation is the ultimate source of new genetic variation within populations. Although most mutations are neutral with no effect on fitness or harmful, some mutations have a small, positive effect on fitness and these variants are the raw materials for gradualistic adaptive evolution. Within finite populations, random genetic drift and natural selection affect the mutational variation. Natural selection is the only evolutionary force which can produce adaptation, the fit between organism and environment, or conserve genetic states over very long periods of time in the face of the dispersive forces of mutation and drift. The force of migration or gene flow has effects on genetic variation that are the opposite of those caused by random genetic drift. Migration limits the genetic divergence of populations and so impedes the process of speciation. The effect of each of these evolutionary forces on genetic variation within and among populations has been developed in great detail in the mathematical theory of population genetics founded on the seminal works of Fisher, Wright, and Haldane. Among the evolutionary forces, natural selection has long been privileged in evolutionary studies because of its crucial role in adaptation. Ecological genetics is the study of evolutionary processes, especially adaptation by natural selection, in an ecological context in order to account for phenotypic patterns observed in nature. Where population genetics tends toward a branch of applied mathematics founded on Mendelian axioms, often with minimal contact with data, ecological genetics is grounded in the reciprocal interaction between mathematical theory and empirical observations from field and laboratory. #Cancer #genome #EvolutionaryGenetics #naturalSelection #geneticVariation #gene #geneExpression #Allele #mutation #dnaMolecule #GeneticsLecture #enzyme #GeneticExamQuestionsSolutions #chromosome #GeneticsExamQuestionsSolutions #genotype #microevolutionaryForces #Iherb #DNA #Fitness #GeneticTesting #genotypeFrequencies #molecularBiology #adaptation #genes #Genetics101 #genetics #mutations #DarwinianEvolution #alleles #NikolaysGeneticsLessons #phenotype

Share with your friends

Link:

Embed:

Video Size:

Custom size:

x

Add to Playlist:

Favorites
My Playlist
Watch Later