0:00:10 1. Напоминание определений с предыдущей лекции, используемых в теореме о соприкасающейся окружности 0:03:07 2. Теорема о соприкасающейся окружности: доказательство, комментарии 0:09:15 3. Два смысла понятия кривизны кривой: кривизна соприкасающейся окружности и длина вектора ускорения 0:14:10 4. Формула кривизны кривой в действительном векторном пространстве для произвольной параметризации 0:29:56 5. Плоские кривые: кривизна со знаком, коориентация 0:38:39 6. Деривационные уравнения. Уравнения Френе и репер Френе для плоских кривых 0:43:58 7. Ортонормированный базис на кривой в действительном векторном пространстве. 0:52:05 8. Теорема о восстановлении кривой по ее кривизне: значение и формулировка 0:55:54 9. Доказательство единственности (плоские кривые с одинаковой кривизной совмещаются движением плоскости) 1:02:20 10. Доказательство существования (существует кривая с данной кривизной) 1:19:10 11. Натуральное уравнение кривой (явная формула восстановления плоской кривой по ее кривизне)
Hide player controls
Hide resume playing