Метод ближайшего соседа является, пожалуй, самым простым методом классификации. Разбирая один за другим его недостатки, мы приходим к методам взвешенных ближайших соседей, парзеновского окна, потенциальных функций… и осознаём, что снова пришли к линейному классификатору. Отбор эталонных объектов в ленивом обучении в некоторых задачах позволяет радикально уменьшить объём хранимых данных, а, если повезёт, то и улучшить качество классификации. Идея, что схожим объектам должны соответствовать схожие ответы, в регрессии приводит к непараметрическим методам типа ядерного сглаживания. Выводы на удивление те же, что и для классификации: подбор ширины окна принципиально важен для оптимизации качества модели, а выбор ядра сглаживания отвечает лишь за её гладкость. В конце рассматривается проблема обнаружения и отсева выбросов.
Hide player controls
Hide resume playing