Геном представляет собой сложную систему взаимодействий функциональных элементов разных уровней организации - самой последовательности ДНК, мотивов, трехмерной структуры, элементов эпигенетического кода и кода вторичных структур ДНК. С помощью методов нейросетевого глубинного обучения стало возможным агрегирование информации о функциональных элементах разных уровней клеточной организации - геномики, эпигеномики, протеомики, метаболомики - и других “омик”, с целью предсказания функциональных элементов, для которых эксперименты либо не достигли нужного качества, либо отсутствуют. В докладе будет рассказано о методах глубинного обучения, разрабатываемых в международной лаборатории биоинформатики для предсказания вторичных структур ДНК. Были разработаны модели на основе сверточных (CNN), рекуррентных (RNN), генеративно-состязательных (GAN) сетей, а также методы переноса обучения с доменной адаптацией для задач предсказания квадруплексов и Z-ДНК. Также будут представлены разрабатываемые в лаборатории подходы из
Hide player controls
Hide resume playing