Myvideo

Guest

Login

Как доказать, что n(1/n)1 и a(1/n)1 при n // Сергей Фролов / Математический мирок

Uploaded By: Myvideo
37 views
0
0 votes
0

Как доказать, что n^(1/n)→1 и a^(1/n)→1 при n→∞, где a>0? В обоих случаях для доказательств будем использовать теорему о сжатой переменной. В первом случае сначала с помощью бинома Ньютона покажем, что выполняются неравенства 1 ≤ n^(1/n) < (2/n)^(1/2). Очевидно, что пределы последовательностей с общими членами 1 и (2/n)^(1/2) равны 1, откуда, в соответствии с теоремой о сжатой переменной, следует, что предел последовательности с общим членом n^(1/n) также равен 1. Во втором случае особый интерес представляет лишь ситуация a>1. Очевидно, что выполняются неравенства 1 < a^(1/n) < n^(1/n) (начиная с некоторых значений n). Пределы последовательностей с общими членам 1 и n^(1/n) равны 1 (первое утверждение очевидно, а второе было доказано ранее), откуда, в соответствии с теоремой о сжатой переменной, следует, что предел последовательности с общим членом a^(1/n) также равен 1.

Share with your friends

Link:

Embed:

Video Size:

Custom size:

x

Add to Playlist:

Favorites
My Playlist
Watch Later