Myvideo

Guest

Login

Теорема Штайница. Семинар 2 // Александр Гайфуллин / ЛШСМ 2023

Uploaded By: Myvideo
1 view
0
0 votes
0

Каждому выпуклому многограннику в трехмерном пространстве соответствует граф, образованный его вершинами и ребрами. Какие конечные графы могут получаться таким образом? Ответ дает замечательная теорема Эрнста Штайница, доказанная им 100 лет назад — в 1922 году. Теорема. Конечный граф можно реализовать как реберный граф выпуклого многогранника тогда и только тогда, когда он планарен, трехсвязен (то есть остается связным после удаления любых двух вершин) и имеет не менее 4 вершин. Я расскажу о двух доказательствах этой теоремы. Первое использует технику напряжений на графах, восходящую к Джеймсу Клерку Максвеллу — тому самому, которому принадлежат уравнения электродинамики, распределение молекул газа по скоростям и много других важнейших достижений в физике. Собственно, получающееся доказательство теоремы Штайница тоже имеет физический характер. А именно, по данному планарному трехсвязному графу нужно построить его механическую модель, заменив вершины шариками, а ребра — пружинками. Эту модель нужно положить на плоскость, закрепив некоторые из вершин, отпустить и подождать, пока она придет в положение равновесия. Оказывается, что по известному положению равновесию искомый выпуклый многогранник уже легко восстанавливается. Ключевой результат в этом доказательстве связан с именем еще одного замечательного математика — Уильяма Томаса Татта, который, наряду со своими математическими достижениями, известен тем, что внес решающий вклад в расшифровку шифра Лоренца во время Второй мировой войны. Второй подход сводит теорему Штайница к теореме Кёбе—Андреева—Тёрстона о реализации планарного графа в виде графа касаний окружностей на плоскости. Этот подход дает более сильный вариант теоремы Штайница: всякий планарный трехсвязный граф можно реализовать в виде реберного графа выпуклого многогранника, все ребра которого касаются сферы. Я расскажу красивое простое доказательство теоремы Кёбе—Андреева—Тёрстона, полученное в 2004 году А. И. Бобенко и Б. А. Шпрингборном. Курс будет доступен для школьников. Полезно знать, что такое векторное произведение, и уметь дифференцировать. Гайфуллин Александр Александрович — член-корреспондент РАН, доктор физико-математических наук. Летняя школа «Современная математика», 20-27 июля 2023 г.

Share with your friends

Link:

Embed:

Video Size:

Custom size:

x

Add to Playlist:

Favorites
My Playlist
Watch Later