00:00:19 2.1 Prove that the Lie algebra sl(n, C) is simple. 00:27:24 2.2 Find a non-nilpotent Lie algebra g with a nilpotent ideal I and nilpotent quotient g/I; g is nilpotent iff it has a nilpotent ideal I 00:42:55 2.3 Show that every Lie algebra g has a unique maximal nilpotent ideal 01:03:11 2.4 Show that [g, rad(g)] ⊂ nil(g) 01:26:22 2.5 For any Lie algebra g, show that g/nil(g) is reductive. Курс: Представления конечномерных и бесконечномерных алгебр Ли Ссылка на плейлист:
Hide player controls
Hide resume playing