Evolution is not only the development of new species from older ones, as most people assume. It is also the minor changes within a species from generation to generation over long periods of time that can result in the gradual transition to new species. The biological sciences now generally define evolution as being the sum total of the genetically inherited changes in the individuals who are the members of a population's gene pool. It is clear that the effects of evolution are felt by individuals, but it is the population as a whole that actually evolves. Evolution is simply a change in frequencies of alleles in the gene pool of a population. For instance, let us assume that there is a trait that is determined by the inheritance of a gene with two alleles--B and b. If the parent generation has 92% B and 8% b and their offspring collectively have 90% B and 10% b, evolution has occurred between the generations. The entire population's gene pool has evolved in the direction of a higher frequency of the b allele--it was not just those individuals who inherited the b allele who evolved. This definition of evolution was developed largely as a result of independent work in the early 20th century by Godfrey Hardy, an English mathematician, and Wilhelm Weinberg, a German physician. Through mathematical modeling based on probability, they concluded in 1908 that gene pool frequencies are inherently stable but that evolution should be expected in all populations virtually all of the time. They resolved this apparent paradox by analyzing the net effects of potential evolutionary mechanisms. Hardy, Weinberg, and the population geneticists who followed them came to understand that evolution will not occur in a population if seven conditions are met: 1. mutation is not occurring 2. natural selection is not occurring 3. the population is infinitely large 4. all members of the population breed 5. all mating is totally random 6. everyone produces the same number of offspring 7. there is no migration in or out of the population #HardyWeinberg #populationGenetics #AlleleFrequency #genePool #genotype #phenotype
Hide player controls
Hide resume playing