In this video, I'll show you the easiest, simplest and fastest way to fine tune llama-v2 on your local machine for a custom dataset! You can also use the tutorial to train/finetune any other Large Language Model (LLM). In this tutorial, we will be using autotrain-advanced. AutoTrain Advanced github repo: Steps: Install autotrain-advanced using pip: - pip install autotrain-advanced Setup (optional, required on google colab): - autotrain setup --update-torch Train: autotrain llm --train --project_name my-llm --model meta-llama/Llama-2-7b-hf --data_path . --use_peft --use_int4 --learning_rate 2e-4 --train_batch_size 12 --num_train_epochs 3 --trainer sft If you are on free version of colab, use this model instead: This is a smaller sharded version of llama-2-7b-hf by meta. Please subscribe and like the video to help me keep motivated to make aw
Hide player controls
Hide resume playing