Myvideo

Guest

Login

Машинное обучение. Критерии выбора моделей. К.В. Воронцов, Школа анализа данных,Яндекс.

Uploaded By: Myvideo
1 view
0
0 votes
0

Лекция состоит из двух слабо связанных частей. В первой части рассматриваются критерии качества классификации, от простейшего «числа ошибок» до правдоподобия, AUC и PR-AUC. Каждый из них имеет свои границы применимости и противопоказания. От них мы переходим к критериям, характеризующим обобщающую способность моделей. От скользящего контроля до разного рода штрафов за сложность модели: AIC, BIC, VC-bound и прочие. Во второй части рассматривается задача отбора признаков, имеющая экспоненциальную вычислительную сложность, и эвристические методы сокращения полного перебора. Жадные алгоритмы. Поиск в глубину и в ширину. Эволюционные алгоритмы. Случайный поиск с адаптацией.

Share with your friends

Link:

Embed:

Video Size:

Custom size:

x

Add to Playlist:

Favorites
My Playlist
Watch Later