Myvideo

Guest

Login

Put some Uranium 238 in a cloud chamber to see the radioactive particles

Uploaded By: Myvideo
3 views
0
0 votes
0

Uranium-238 is the most common isotope of uranium found in nature, with a relative abundance of 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However, it is fissionable by fast neutrons, and is fertile, meaning it can be transmuted to fissile plutonium-239. 238U cannot support a chain reaction because inelastic scattering reduces neutron energy below the range where fast fission of one or more next-generation nuclei is probable. Doppler broadening of 238U's neutron absorption resonances, increasing absorption as fuel temperature increases, is also an essential negative feedback mechanism for reactor control. Around % of natural uranium's mass is uranium-238, which has a half-life of billion years). Due to its natural abundance and half-life relative to other radioactive elements, 238U produces ~40% of the radioactive heat produced within the Earth. The 238U decay chain contributes 6 electron anti-neutrinos per 238U nucleus (1 per beta decay), resulting in a large detectable geoneutrino signal when decays occur within the Earth.[3] The decay of 238U to daughter isotopes is extensively used in radiometric dating, particularly for material older than ~ 1 million years. Depleted uranium has an even higher concentration of the 238U isotope, and even low-enriched uranium (LEU), while having a higher proportion of the uranium-235 isotope (in comparison to depleted uranium), is still mostly 238U. Reprocessed uranium is also mainly 238U, with about as much uranium-235 as natural uranium, a comparable proportion of uranium-236, and much smaller amounts of other isotopes of uranium such as uranium-234, uranium-233, and uranium-232.

Share with your friends

Link:

Embed:

Video Size:

Custom size:

x

Add to Playlist:

Favorites
My Playlist
Watch Later