Myvideo

Guest

Login

#227. ОГОНЬ! Вариант ЕГЭ-2020 от Wild Mathing (математика)

Uploaded By: Myvideo
21 view
0
0 votes
0

Разбор свежего варианта ЕГЭ по математике 2020 от Wild Mathing. Этих задач вы еще не видели! Мои курсы: VK: Задачник: Донат: Скачать УСЛОВИЯ ЗАДАЧ: Составил для вас цельный вариант, в котором сочетаются потрясающие классические факты с несколькими замечательными задачами формата ЕГЭ: неравенства о средних, свойство центроида тетраэдра и метод масс, симметрия, Пифагоровы тройки. 9 июля перед экзаменом будет трансляция — не прозевайте! А для этого (и не только (обязательно подпишитесь на канал и жмякните на колокольчик! 0:00 — №13. Тригонометрия 2:19 — №14. Стереометрия (I способ) 4:29 — №14. Стереометрия (II способ) 6:25 — №15. Неравенство 7:35 — №16. Планиметрия 8:59 — №17. Экономическая задача 9:49 — №18. Задача с параметром 11:55 — №19. Теория чисел БОЛЬШЕ КРУТЫХ РАЗБОРОВ: Вариант 1: Вариант 2: Вариант 3: FAQ — Как мы нашли отношение площадей KNML и KDC в №14? — Вспомни (докажи) свойство: площади треугольников, имеющих общую высоту, относятся как длины оснований. Площади треугольников KNM и DNM относятся как KN:ND, то есть 2:1, и если площадь треугольника KNM равна S, то площадь DNM равна 2S. DM:ML=3:1 ⇒ площадь △KML равна S. KL:LC=2:1 ⇒ площадь △СLM равна 2S. Вновь LM:DM=1:3 ⇒ площадь △DMC равна 6S. Так мы все-все соотношения установили. Площадь KNML равна 2S, а площадь △KDC равна 12S. Отсюда и отношение 1:6. №13. а) Решите уравнение (sin2x-cosx)/(cos2x-sinx)=0. б) Найдите все корни этого уравнения, принадлежащие отрезку [log_π(e); 3log_e(π)]. №14. В тетраэдре ABCD точка N — пересечение медиан грани ABD, точка L — пересечение медиан грани ABC. а) Докажите, что CN пересекает отрезок DL и делит его в отношении 3:1, считая от точки D. б) Какую часть объема тетраэдра ABCD занимает объем пирамиды BKNML, если точка K — середина ребра AB, а точка M — пересечение отрезков CN и DL? №15. Решите неравенство 3^x 4^x≤5^x. №16. В треугольнике ABC точки M₁, M₂, M₃ — середины сторон AB, BC, AC соответственно, а точки H₁, H₂, H₃ — основания высот, лежащие на тех же сторонах. а) Докажите, что из отрезков H₁M₂, H₂M₃, H₃M₁ можно составить треугольник. б) Найдите периметр этого треугольника, если периметр треугольника ABC равен a. №17. В июле 2020 года для развития бизнеса планируется взять кредит в банке на пять лет в размере 200 млн рублей. Условия его возврата таковы: — каждый январь долг увеличивается на 10% по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо выплатить одним платежом часть долга; — в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей: Год | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 Долг | 200 | 125 | x | 100 | 75 | 0 Долг на июль 2022 года составляет x млн рублей, причем 100≤x≤125. Найдите наибольшее значение x, при котором общая сумма выплат по кредиту будет не более 262 млн рублей. №18. Найдите все значения параметра b, при каждом из которых система уравнений {x²-y=πx-π²/4, {b∙arcsin(sinx)=y имеет единственное решение. №19. Четыре музыкальных критика оценивают новый альбом. Каждый из них выставляет одну оценку — целое число баллов от 0 до 10 включительно. Рейтинг альбома определяется формулой √((x₁)² (x₂)² (x₃)² (x₄)²)/4 [среднее квадратическое] на основе выставленных оценок x₁, x₂, x₃, x₄. а) Может ли рейтинг альбома оказаться больше 9, если известно, что один из критиков выставил оценку 6? б) Может ли рейтинг альбома оказаться натуральным числом, если известно, что только у двух из четырех критиков выставленные оценки совпали? в) Найдите наименьшее возможное значение рейтинга альбома, если известно, что сумма всех выставленных оценок равна 36. #Математика #ЕГЭ #Поступление

Share with your friends

Link:

Embed:

Video Size:

Custom size:

x

Add to Playlist:

Favorites
My Playlist
Watch Later