Myvideo

Guest

Login

290 - Deep Learning based edge detection using HED

Uploaded By: Myvideo
5 views
0
0 votes
0

Deep Learning based edge detection using holistically nested edge detection (HED) Code generated in the video can be downloaded from here: Original HED paper: Caffe model is encoded into two files 1. Proto text file: 2. Pretrained caffe model: NOTE: In future, if these links do not work, I cannot help. Please Google and find updated links (information current as of October 2022) HED is a deep learning model that uses fully convolutional neural networks and deeply-supervised nets to do image-to-image prediction.​ The output of earlier layers is called side output. ​ HED makes use of the side outputs of intermediate layers. ​ The output of all 5 convolutional layers is fused to generate the final predictions. ​ Since the feature maps generated at each layer is of different size, it’s effectively looking at the image at different scales. ​ The model is VGGNet with few modifications:​ Side output layer is connected to the last convolutional layer in each stage, respectively conv1_2, conv2_2, conv3_3, conv4_3,conv5_3. The receptive field size of each of these convolutional layers is identical to the corresponding side-output layer.​ Last stage of VGGNet is removed including the 5th pooling layer and all the fully connected layers.​ The final HED network architecture has 5 stages, with strides 1, 2, 4, 8 and 16, respectively, and with different receptive field sizes, all nested in the VGGNet. ​

Share with your friends

Link:

Embed:

Video Size:

Custom size:

x

Add to Playlist:

Favorites
My Playlist
Watch Later