Myvideo

Guest

Login

Bayesian Model Selection in Deep Learning by Mark van der Wilk (QUVA Lab & Qualcomm meetup series)

Uploaded By: Myvideo
6 views
0
0 votes
0

Mark van der Wilk (Department of Computing, Imperial College London) joined us for a lecture on Deep Learning & AI on the 24th of February, 2021. The Bayesian Deep Learning community is widely known for its efforts in bringing uncertainty estimates to deep neural networks. However, Bayesian methods have another key advantage: the ability to adjust inductive biases through model selection. Interestingly, model selection and uncertainty estimation are dual problems in the Bayesian framework. In this talk, we will discuss the current state of model selection in Bayesian deep learning, together with some of Mark van der Wilk's recent work towards this. He will discuss some theoretically grounded successes in Deep Gaussian Processes and in connecting ensembling to Bayesian inference, as well as recent empirical work on Neural Architecture Search. To finish, he would like to speculate on possible other benefits that the Bayesian framework can provide, in particular relating to asynchronous computatio

Share with your friends

Link:

Embed:

Video Size:

Custom size:

x

Add to Playlist:

Favorites
My Playlist
Watch Later