The ABO blood group system is widely credited to have been discovered by the Austrian scientist Karl Landsteiner, who identified the O, A, and B blood types in 1900. Landsteiner originally described the O blood type as type “C“, and in parts of Europe it is rendered as “0“ (zero), signifying the lack of A or B antigen. Landsteiner was awarded the Nobel Prize in Physiology or Medicine in 1930 for his work. Alfred von Decastello and Adriano Sturli discovered the fourth type, AB, in 1902. Due to inadequate communication at the time, it was subsequently found that the Czech serologist Jan Janský had independently pioneered the classification of human blood into four groups, but Landsteiner's independent discovery had been accepted by the scientific world while Janský remained then in relative obscurity. However, in 1921 an American medical commission acknowledged Janský's classification. Jan Janský is nowadays credited with the first classification of blood into the four types (A, B, AB, 0). Janský's classification remains in use today. In Russia and states of the former USSR blood types O, A, B, and AB are respectively designated I, II, III, and IV. The designation A and B with reference to blood groups was proposed by Ludwik Hirszfeld. In America, W.L. Moss published his own (very similar) work in 1910. Ludwik Hirszfeld and E. von Dungern discovered the heritability of ABO blood groups in 1910–11. Felix Bernstein demonstrating the correct blood group inheritance pattern of multiple alleles at one locus in 1924. Watkins and Morgan, in England, discovered that the ABO epitopes were conferred by sugars, to be specific, N-acetylgalactosamine for the A-type and galactose for the B-type. After much published literature claiming that the ABH substances were all attached to glycosphingolipids, Finne et al. (1978) found that the human erythrocyte glycoproteins contain polylactosamine chains that contains ABH substances attached and represent the majority of the antigens. The main glycoproteins carrying the ABH antigens were identified to be the Band 3 and Band 4.5 proteins and glycophorin. Later, Yamamoto's group showed the precise glycosyl transferase set that confers the A, B and O epitopes. #BloodBiofluid #aboBloodGroupSystem #BloodTypeLiteratureSubject #HealthIndustry #genetics #biology #SDS #glycosphingolipids #glycosylTransferase #epitopes #ABOBloodType #BloodGroup #AlleleFrequency #GenotypeFrequency #ABOBloodTypes #ABOBloodGroups #RhBloodGroups #blood #classification #antibodies #transfusion #incompatibility #rhesus #bloodGroupsAndBloodTypes #bloodGroupsExplained #bloodGroupsAndTransfusions #bloodGroupsVideo #bloodTypesAndRhFactor
Hide player controls
Hide resume playing