Пифагоровой тройкой называются три натуральных числа равные длинам сторон некоторого прямоугольного треугольника. Ещё древние вавилоняне умели находить такие тройки, причём огромных размеров и не пропорциональные друг другу. С современной точки зрения, такая задача равносильна нахождению точек с рациональными координатами на единичной окружности, стандартно вложенной в координатную плоскость. Успехи вавилонян объясняются тем, что множество таких точек бесконечно; в течение тысячелетий постепенно выяснилось, что большинство плоских кривых этим свойством окружности не обладает. Однако полная ясность наступила лишь в двадцатом веке: было обнаружено, что всё дело в топологии комплексификации кривой. На лекции будет рассказано об истории этих исследований и о проблемах, остающихся на сегодняшний день открытыми. Георгий Шабат — д.ф.-м.н., профессор кафедры математики, логики и интеллектуальных систем в гуманитарной сфере Института лингвистики РГГУ. 22 октября 2013 г.
Hide player controls
Hide resume playing