Цель данного курса — показать, как вероятностные методы и интуиция помогают отвечать на теоретико-числовые вопросы. Я расскажу про два существенно разных сюжета. 1) Верно ли, что простых чисел-близнецов бесконечно много? Верно ли, что любое четное число раскладывается в сумму двух простых? Ответы на эти вопросы, формально говоря, еще не получены. Однако, существуют правдоподобные гипотезы, дающие куда более точную информацию. 2) Типичное число простых множителей натурального числа. Пусть w(n) — число различных простых делителей натурального числа n. Выберем n равномерно случайно из {1,2,…,N} для большого N. Чему равно типичное значение w(n)? На этом материале мы познакомимся с базовыми теоремами теории вероятностей: законом больших чисел и центральной предельной теоремой. Материалы: Алексей Игоревич Буфетов Летняя школа «Современная математика», г. Дубна 20-27 июля 2016 г.
Hide player controls
Hide resume playing